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SYNOPSIS 

A computer simulation model was developed to investigate spherulitic growth in polymers 
of infinite and plate-limited volume as well as in fibre-reinforced polymer composite systems. 
Parameters like thermal nucleation rate and athermal nucleation density, plate distance, 
and fibre content were varied. The simulation crystallization process was evaluated following 
Avrami‘s method in the case of infinite volume and by stepwise approximation by Avrami 
functions in the case of limited volume. In addition, the simulation method allows the 
visualization of the growing entities at  any phase of crystallization. Therefore the geometry 
of growing entities can be easily compared with the corresponding crystallization exponent. 
A good agreement between the crystallization exponent and the growth geometry was found. 

Depending on nucleation mode, “infinite” systems yield Avrami exponents of 3 and 4. 
In plate-limited volume, a transcrystallization effect was observed in case of high athermal 
nucleation density on plate surface and large plate distances. This particular skin effect 
decreases the three-dimensional growth to a one-dimensional needle-shaped one. Small 
plate distance changes the spherical to a disk-like growth, resulting in crystallization ex- 
ponents of 2 or 3, depending on nucleation mode. The crystallization behaviour of fibre- 
reinforced composite systems is more complex. Low fibre content or large fibre distance 
and high athermal nucleation density on the fibre surface induce the formation of trans- 
crystalline zones. The three-dimensional growth of the spheres at the beginning is restricted 
by their neighbours, so that their geometry changes to a pyramidical one. They grow with 
a front normal to the fibre surface and the crystallization exponent is shifted in between 
2.0 and 2.6 depending on nucleation density. High fibre content leads to a growth along 
the triangular channels between three adjacent fibres; the corresponding exponent amounts 
to 1.6. 0 1994 John Wiley & Sons, Inc. 

INTRODUCTION 

The properties of thermoplastic fibre-reinforced 
composites are significantly influenced by the mor- 
phology of the polymer matrix. Effects like trans- 
crystallization change mechanical properties due to 
a preferred orientation of crystal growth. The mor- 
phology is determined by the nucleation rate on fibre 
surface, fibre distance, and growth velocity of the 
spherulites. The relations between these parameters 
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and the resulting morphology of highly filled com- 
posites are widely unknown. Direct studies of the 
crystallization process in highly filled composites, 
especially by optical methods, are difficult to carry 
out. Therefore, an indirect method, differential 
scanning calorimetry (DSC ) , is often used to mon- 
itor the crystallization process by its exothermic heat 
flow. In many cases, it has been observed that the 
crystallization exotherms of crystallizing composite 
materials lead to nonlinear trajectories in the 
Avrami plots. The interpretation of this effect, how- 
ever, is quite difficult. For this reason, it was desir- 
able to investigate the crystallization of an idealized 
model system that allows the exact definition of all 
basic parameters. Special attention was drawn to 
implement a correct model for a system of unlimited 
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and plate-limited volume before investigating a 
fibre-filled composite system. 

The mathematical problem of filling an infinite 
volume or plane by randomly distributed growing 
elements was first solved by Poisson.' Evans,2 
Avrami, and Kolmogorof f adapt the Poisson 
function in order to describe crystallization kinetics. 
The time-dependent formulation of the crystallizing 
portion of a polymer at  constant temperature T ,  
X ( t ) ,  is well known in the form of the so-called 
Avrami equation, 

where k is a constant, depending on nucleation rate 
and growth velocity, and n is an exponent describing 
the growth order. Of interest in our investigation is 
that this quantity varies with the mode of nucleation 
and with the geometry of growing entities. Polymers 
usually crystallize in the form of so-called spheru- 
lites. Athermal nucleation and spherulitic growth 
lead to an Avrami exponent of 3, thermal nucleation 
and spherulitic growth to a value of 4.5 

However, these values were never found with ex- 
isting polymers due to the differences between the 
mathematical model and real properties of the ma- 
terial? Three possible reasons for this difference can 
be assumed: First, the nucleation mode is a mixture 
of thermal and athermal nucleation, resulting in ex- 
ponents between 3 and 4.7 Second, the spherulites 
are not compact spheres with a well-defined growth 
front. The crystallization does not take place only 
at  the growth front, but also inside the spherulites 
in dependence on time. This effect shifts the crys- 
tallization exotherm to longer time and to lower ex- 
ponents. The third reason may result from a limi- 
tation of the crystallizable volume by incorporation 
of filler materials like spheres, fibres, or plates. In 
highly filled systems, the original three-dimensional 
geometry of spherulites can be reduced to two-di- 
mensional discs or one-dimensional needles. A lower 
value of growth order leads to a lower exponent in 
the Avrami equation. 

All these effects influence the basic assumptions 
for describing the crystallization process as a simple 
Avrami process. However, knowing about the real 
circumstances of polymeric crystallization, an 
Avrami plot is usually applied to describe the crys- 
tallization kinetics. 

In recent years, some computer simulations of 
crystallization kinetics in spherulitic systems have 
already been done. Hay and Przekop' investigated 
the crystallization process in simulated systems of 
growing spheres, discs, and rods. Their model con- 

sists of a three-dimensional cube, containing ran- 
domly distributed start-points of growing entities 
and a lattice of observation points gridding the whole 
system. The observation points represent small vol- 
ume elements. All spheres start growing simulta- 
neously and simulate an athermal nucleation. The 
time-dependent crystallized portion of the system 
was defined by the ratio of the nonoverlapped to the 
total number of observation points in dependence 
on sphere diameter. Approximately 200 spheres and 
150 observation points were used for the calculation. 
The authors obtained Avrami exponent values from 
2.90 to 2.95. However, the ideal value of 3.0 could 
not be reached. One reason for this result may be 
that the influence of system boundaries was not 
completely excluded. To simulate an "infinite" vol- 
ume, the probability for reaching a crystallizing vol- 
ume element inside the bulk volume has to be iden- 
tical for any direction and position. Therefore, the 
elimination of observation points near the system 
boundaries with less probability is absolutely nec- 
essary. 

Galeski and Pi6rkowska studied spherulites 
pattern and size distribution using a similar simu- 
lation model in order to confirm their analytical cal- 
culations. They achieved a good agreement between 
computed and theoretical values of Avrami expo- 
nents. Lambrigger et a1.l' did some work on the in- 
cubation time of nucleation by a simulation. 

A new theoretical approach of the crystallization 
in thin polymer films was developed by Billon et 
al.13 They used a net of observation points placed 
inside a parallelepiped, the length and width of 
which was much greater than its thickness. Nuclei 
were placed both inside the volume and on the sur- 
face. The transformed volume fraction of the whole 
system was defined by the number of observation 
points reached by the growing spherulites at a given 
time in relation to the total number of observation 
points. In thin films, a significant lowering of the 
crystallized portion was found, but no specified val- 
ues of Avrami exponents were reported. 

EXPERIMENTAL 

Our newly developed model contains various com- 
ponents: growing spheres, fillers, external bound- 
aries, and the inner observation volume (Fig. 1 ). 
The growing spheres are described by their positions, 
activation times, and growth velocities. All randomly 
positioned startpoints are located inside the external 
boundaries, but outside the fillers' space. Thermal 
nucleation is simulated by placing start-points (nu- 
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Figure 1 Sectional view of our three-dimensional sim- 
ulation model. Infinite volume simulation including one 
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clei) in the bulk and each start-point is described 
by a different activation time in dependence on the 
given nucleation rate G. Athermal nucleation is re- 
alized by placing a given number of start-points cor- 
relating to the nucleation density D (in particular 
on the fillers’ or on the external boundary surface) 
and by assigning the same activation time to each 
nucleus. After positioning the start-points, the nuclei 
grow with constant growth velocity u. 

A new and important feature of our model is the 
possibility of insulating the observation area from 
the system boundaries so that the crystallization ki- 
netics within an infinite volume can be calculated. 

The evaluation procedure starts after fixing the 
geometry of the external boundaries, the inner ob- 
servation volume, the fillers, and the start-points as 
described above. Then, an observation point is ran- 
domly positioned anywhere inside the observation 
area, but outside the fillers. For each sphere (coor- 
dinates X s ,  Ys,  2,) , the time t,,, for reaching this 
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provement by increasing calculation cycles. 

a b  

Figure 3 Avrami plots for infinite volume. (a) Athermal 
nucleation density D = 200 mm-3, u = 10 pm s-l, r i  = 3.0, 
log k = -3.1. (b)  Thermal nucleation rate G = 10 mm-3 
s-l, u = 10 pm s-l, E = 4.0, log k = -4.9. 

observation point (coordinates X,, Yp,  2,) is cal- 
culated by the following equation: 

V(X, - xs)2 + (Y, - Ys)2 + (2, - 2s)2 
tp,s = f * 

U 

( 2 )  

The shortest of all calculated times t,,, is taken as 
the “crystallization time” for this observation point. 
In an inner loop, the crystallization times for about 
200 randomly positioned observation points are ob- 
tained. In an outer loop, new start-points and start- 
times of spheres were randomly fixed in order to 
evaluate another system with identical simulation 
parameters, passed through 75 times. All of the 
about 15.000 collected crystallization times are clas- 
sified by time intervals, resulting in a distribution 
of crystallization rate as a function of time (Fig. 2) .  
This distribution contains the same information as 
the heat flow-time traces of DSC scans, because the 
exothermic heat flow of an isothermal crystallization 
process is directly proportional to the crystallization 

External boundary volume 
Observation volume 

d X I  0 Observation point 
X x x Thermal nucleus 

Athermal nucleus 

Figure 4 Sectional model view of nuclei distribution 
and observation volume in plate-limited systems. Thermal 
nucleation only in the bulk (system one) and athermal 
nucleation only on the plate surface (system two). 
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rate. Step by step integration leads to the time-de- 
pendent degree of crystallization. Both Avrami ex- 
ponent n and constant k can be obtained from the 
double logarithmic form of the Avrami equation: 

.. . .. . . . .  . . .  . . .  . ;. . . .  . .  . 

log{ -ln[l - x ( t ) ] }  = log k + n-log t. ( 3 )  

These parameters, especially the exponent n are 
used to discuss the growth order of the spherulites 
during the crystallization process. In addition, dif- 
ferent stages of crystallization of the simulated sys- 
tem can be visually controlled and photographed 
from the computer screen. This is an essential tool 
for the interpretation of the nonlinear trajectories 
observed in the case of crystallization under limi- 
tations in space. These plots were approximated by 
stepwise Avrami functions. The resulting exponents 
are called “crystallization exponents” to express 
their difference to the “pure” Avrami exponents. 

RESULTS 

Infinite Volume 

In order to simulate the properties of an infinite 
volume in a correct way it is necessary to eliminate 
the influence of the external system boundaries. If 
the distance between boundaries of observation vol- 
ume and the external system boundaries is large 
enough, the crystallization process inside the ob- 
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Figure 6 Average crystallization exponent ri as a func- 
tion of plate distance. Various thermal nucleation rates G 
only in the bulk. 

servation volume does not “see” the limitations in 
space ( Fig. 1 ) . This critical distance depends on nu- 
cleation density and corresponds to the average dis- 
tance between the start-points. After collecting the 
results of enough (some 10,000 ) crystallization 
points in such an infinite system, we obtained a 
straight line in the Avrami plot with the theoretically 
proposed exponents of 3.0 for athermal and 4.0 for 
thermal nucleation (Fig. 3). Therefore, the com- 
puter simulation seems to reproduce the results of 
the Avrami theory correctly. 

Plate-Limited Volume 

Plate-limited volumes are characterized by the 
identity of the boundaries of the inner observation 
volume and the whole system in one dimension. To 
simulate an infinite crystallizing polymer film, dis- 
tances between observation and external volume in 
the two remaining dimensions have to be much 
larger (Fig. 4) .  For our investigations we used the 
geometry of a cube lowering its height and broad- 
ening its width in order to obtain just the same vol- 
ume for each plate distance. Two types of nucleation 
were introduced. The first one simulates only nuclei 
of growing spheres in the bulk and none on the plate 
surface; the second one only nuclei on the plate sur- 
face and none in the bulk. Thermal nucleation was 
chosen in the first case and athermal in the second. 

Due to the effect of limitations, the following plots 
are characterized by nonlinear trajectories in the 
double logarithmic scale. Therefore, the plots were 
subdivided into three parts, resulting in crystalli- 
zation exponents nl, n2, and n3 (early-, middle-, and 
late-crystallization stage ) by Avrami functions 
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Figure 7 Simulation of growing spherulites for various crystallization times t and different 
plate distances d .  Athermal nucleation only on the plate surface with nucleation density 
D = 1000 mm-’, u = 10 pm s-’. ( a )  d = 1000 pm, t = 4 s, 35 s; (b)  d = 31.25 pm, t = 1 s, 
1.5 s, 2 s, 3 s; ( c )  d = 7.813 pm, t = 1 s, 1.5 s, 2 s, t,. 

within these stage limits. To eliminate the problem 
of selecting and comparing the correct stages, the 
calculation of an average crystallization exponent 6 
was also carried out to characterize the more general 
growth order of the complete crystallization process. 

In both nucleation types, the crystallization ex- 
ponent nl of 3 or 4, respectively, a t  the beginning 
of spherical growth was obtained. Depending on nu- 
cleation density and plate distance, the exponent 
decreases with increasing crystallization time. There 
are various reasons for this behaviour taking place 
within the two systems. 

In the system of limited plate distance and ther- 
mal nucleation only in the bulk, growing spheres 
come into contact with the plates when they have a 
sufficiently large size. After contacting, these spheres 
can grow only in a restricted form resulting in lower 
crystallization exponents n2, n3 (Fig. 5 ) . The portion 
of the spheres growing under this volume restriction 
increases with decreasing plate distance. In very thin 
films all entities only grow with a disc-like geometry 
not with spherical. Therefore, the time of three-di- 
mensional growth becomes very short and the main 
part of the volume is filled by growing discs. This 
effect lowers the average crystallization exponent 6 
from nearly 4 to nearly 3 (Fig. 6). 

In the case of athermal nucleation on the plate 
surface, the circumstances are more complicated. At 
an early stage the spheres grow three-dimensionally 
(Figs. 7a, 8a-g) . Depending on nucleation density, 
each growing sphere limits the volume of its neigh- 
bours. Therefore, they grow with a common front, 

each of them in a one-dimensional tube (Fig. 7a). 
The so-called transcrystallization results from high 
nucleation density and large plate distance, and as 
a consequence the corresponding crystallization ex- 
ponent n2 becomes nearly 1 (Fig. 8f,g), which is in 
good agreement with the visible one-dimensional 
growth. From computations of unusually high ex- 
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Figure 8 Avrami plots for various plate distances d /  
pm. Athermal nucleation only on the plate surfaces with 
nucleation density D = 1000 mm-2, u = 10 pm s-l. (a )  d 
= 8, nl = 2.9, % = 2.4, n3 = 2.0, ri = 2.5; (b) d = 32, nl 
= 3.0, % = 3.0, n3 = 3.1, ii = 3.0; (c )  d = 63, nl = 2.9, n2 
= 2.8, n3 = 3.8, ii = 2.9; (d)  d = 125, nl = 2.8, n2 = 2.1, n3 
= 6.0, ri = 2.6; (e )  d = 250, nl = 2.9, n2 = 1.5, n3 = 5.0, 6 
= 2.1; ( f )  d = 500, n, = 2.8, n2 = 1.3, n3 = 4.9, ti = 1.8; 
(g)  d = 1000, nl = 2.7, n2 = 1.2, n3 = 3.5, ri = 1.5. 
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Figure 9 Average crystallization exponent ii as a func- 
tion of plate distance. Various athermal nucleation density 
D only on the plate surface. 

ponents n3 at  high plate distances near the end of 
crystallization, it can be assumed that the sector of 
colliding crystallization fronts has a significant 
higher growing order. This process does not obey an 
exponential law. 

If the plate distance is smaller than the average 
nuclei distance, the growing spheres arrive at the 
opposite plate before restricting the volume of their 
neighbours. After a three-dimensional beginning, the 
growth mode changes to a two-dimensional disc- 
shaped type (Fig. 7c ). A smaller plate distance low- 
ers the growth order of the growing spheres and 
shifts the corresponding crystallization exponents 
n3 as well as f i  toward 2 (Figs. 8a, 9).  

Between the one-dimensional transcrystalline 
and the two-dimensional disc-shaped growth ge- 
ometry, a maximum of the average crystallization 
exponent ii is reached if plate distance and average 
nuclei distance are in the same range (Fig. 9). 
Growing spheres come into contact with their 
neighbours in about the same time interval as they 

pT- External boundary volume 

Fibre 

Observation volume 

Volume under calculation 

Athermal nucleus 

Thermal nucleus 

Figure 10 Sectional model view of fibre-reinforced 
composites. Thermal nucleation in the bulk and athermal 
nucleation on the fibre surface. 
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Figure 11 Average crystallization exponent ii as a 
function of fibre volume percentage. Various thermal nu- 
cleation rate G only in the bulk. 

arrive at the opposite plate (Fig. 7b). Therefore, the 
growth geometry is mainly three-dimensional, which 
correlates with the resulting average crystallization 
exponent f i  of nearly 3 (Fig. 8b). 

Fibre Reinforced Composites 

In order to simulate the growth of spherulites within 
fibre-reinforced composites the same rules are ap- 
plied as in the case of infinite volume. The model 
volume was great enough to ensure an inner obser- 
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log ( V s )  
Figure 12 Avrami plots for various fibre-volume per- 
centages F J % .  Thermal nucleation only in the bulk with 
nucleation rate G = 10 mm-3 s-', u = 0.1 pm s-'. ( a )  F, 
= 10, nl = 4.0, n2 = 3.9, n3 = 3.9, ti = 3.9; (b)  F, = 30, nl 
= 3.9, n2 = 3.7, n3 = 2.5, ii = 3.4; (c)  F, = 50, nl = 4.1, n2 
= 2.9, n3 = 2.1, ii = 2.9; (d) F, = 70, nl = 4.1, n2 = 2.5, n3 

= 2.1, ii = 2.4; (e )  F, = 90, nl = 4.1, n2 = 2.3, = 2.0, r i  
= 2.3. 
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face. log t = 1.6, u = 0.1 pm s-'. 
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vation area with the properties of an infinite com- 
posite. The inner observation area consists of seven 
fibres arranged in a hexagonal unit cell. The com- 
plete system contains 57 fibres (Fig. 10).  

Similar to the computations with the plate-lim- 
ited systems, two types of composites were studied. 
The first one simulated nuclei only in the bulk, and 
the second one simulated them only on the fibre 
surface. Thermal nucleation was chosen in the first 
case and athermal in the second. Both systems lead 
to a three-dimensional spherical growth at  the be- 
ginning of crystallization. 

a b d 
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Figure 15 Simulation of growing spherulites in a low 
filled fibre-reinforced system with Fo = 20%. Athermal 
nucleation density D = 5 * lo4 mm-' only on the fibre sur- 
face. log t = 1.6, u = 0.1 pm s-'. ( a )  Vertical fibre inter- 
section; ( b )  parallel fibre intersection. 
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Figure 16 Avrami plots for various athermal nucleation 
density D/mrn-' only on the fibre surface. Fibre-volume 
percentage F, = 20%, u = 0.1 pm s-'. ( a )  D = 5.0 - lo5, 
n, = 2.3, n2 = 2.0, n3 = 2.9, ri = 2.4; (b)  D = 1.0.105, nl 
= 3.0, n2 = 2.3, n3 = 2.9, ri = 2.4; (c )  D = 5.0.104, nl 
=3.0, n 2  = 2.6, n3 = 2.9, ri = 2.7; (d) D = 2.5-104, nl 
=2.9, nz = 3.1, n3 = 3.1, ri = 3.0; (e )  D = 1.0.104, nl 
= 3.2, n2 = 3.1, n3 = 3.5, r i  = 3.3. 
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Figure 17 Average crystallization exponent 6 as a 
function of fibre-volume percentage. Various athermal 
nucleation density D only on the fibre surface. 

Smaller fibre distances and lower nucleation 
density in the system with thermal nuclei in the 
bulk decrease the order of growth (Fig. 11). This 
effect is not as strong as in the plate-limited system 
due to the different distances between nuclei posi- 
tions and the surrounding fibres. Very small fibre 
distances lead to a mainly one-dimensional growth 
in the tube between three adjacent fibres, resulting 
in crystallization exponents n3 of nearly 2, which 
suggests a one-dimensional growth in the case of 
thermal nucleation (Fig. 12d,e). At greater fibre 
distances spheres are able to grow mainly three-di- 
mensionally (Fig. 12a,b). 

In the system with athermal nuclei only on the 
fibre surface, a critical range of fibre distances, de- 
pending on nucleation density on the fibre surface, 
can be observed. If fibre distance is less than a crit- 
ical value, growing spheres arrive at the next fibre 
surface before restricting the growth of the neigh- 
bouring spheres (Fig. 13). At high nucleation den- 
sities, the crystallization exponent n3 is reduced to 
1.6 (Fig. 14a), which is in good agreement to the 
visible one- and two-dimensional growth between 
three adjacent fibres. On the other side, if the fibre 
distance is relatively large and the nucleation density 
on the fibre surface is sufficiently high, the spheres 
(not the adjacent fibres) restrict the growth process 
of their neighbours and a transcrystalline zone ap- 
pears. The growth geometry in the transcrystalline 
zone is mainly pyramidical on viewing the vertical 
fibre intersection (Fig. 15a) and disc-shaped at the 
parallel one (Fig. 15b), resulting in crystallization 
exponents n2 in the range of 2.0-2.6, depending on 
fibre surface nucleation density (Fig. 16a-c) . 

Under certain assumptions for the composite 
model, the calculations lead to unusually high crys- 
tallization exponents (Fig. 16e). In the case of low 
nucleation densities on the fibre surface and large 
fibre distances, the growing spheres include the 
fibres at the beginning of crystallization (imagine 
lower nucleation density in Fig. 15a). This sur- 
rounding process has a significant higher order than 
the usual three-dimensional spherical growth ge- 
ometry. This observation is in a good agreement with 
the results of Dobbert, l4 who showed that exponents 
for such geometries may reach values of 4-5 in the 
case of athermal nucleation. Nevertheless, the av- 
erage crystallization exponent 6 is being shifted 
down to lower values by higher fibre contents as 
well as by higher fibre nucleation densities (Fig. 17). 
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